Permütasyon

Permütasyon Nedir
Permütasyon r ve n pozitif doğal sayılar ve r < n olmak üzere , n elemanlı bir A kümesinin r elemanlı sıralı r’ lilerine A kümesinin r’ li permütasyonları denir.
n elemanlı A kümesinin r’ li permütasyonlarının sayısı P (n,r) = n! / (n-r)! formülü ile bulunur.

Örnek: Farklı renkte 7 mendilin 3’ ü, bir öğrenciye 1 mendil verilmek şartıyla 3 öğrenciye kaç farklı şekilde verilebilir?
Çözüm : A kümesi mendiller kümesi olur. Eleman sayısı 7 ' dir. n = 7 , üç mendil dağıtılacak. r = 3 olur. Bu mendiller ;
P( 7, 3) = 7! / ( 7 - 3 )! = 7.6.5.4! / 4! = 7.6.5 = 210 farklı şekilde dağıtılabilir.



A. SAYMANIN TEMEL KURALI

1. Toplama Kuralı

Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin elemanlarının sayısına eşittir.

Sonlu ve ayrık iki küme A ve B olsun.

olmak üzere,

Sonuç

Ayrık iki işlemden biri m yolla diğeri n yolla yapılabiliyorsa, bu işlemlerden biri veya diğeri m + n yolla yapılabilir.

2. Çarpma Kuralı

2 tane elemandan oluşan (a1, a2) ifadesine sıralı ikili denir. Benzer biçimde

(a1, a2, a3) ifadesine sıralı üçlü

(a1, a2, a3, a4) ifadesine sıralı dörtlü

. . .

(a1, a2, a3, … , an) ifadesine sıralı n li denir.

A ve B sonlu iki küme olsun

s(A) = m

s(B) = n

olmak üzere,

s(A × B) = s(A) × s(B) = m × n dir.

× B kümesi birinci bileşenleri A dan ikinci bileşenleri B den alınan sıralı ikililerden oluşur.

Sonuç

İki işlemden birincisi m yolla yapılabiliyorsa ve ilk işlem bu m yoldan birisiyle yapıldıktan sonra ikinci işlem n yolla yapılabiliyorsa bu iki işlem birlikte

 

m × n

yolla yapılabilir.

B. FAKTÖRİYEL

1 den n ye kadar olan sayma sayılarının çarpımına n faktöriyel denir ve n! biçiminde gösterilir.

Sonuç

C. PERMÜTASYON (SIRALAMA)

r ve n sayma sayısı ve r £ n olmak üzere, n elemanlı bir kümenin r elemanlı sıralı r lilerine bu kümenin r li permütasyonları denir.

n elemanlı kümenin r li permütasyonlarının sayısı :

Sonuç

1. P(n, n) = n!

 

2. P(n, 1) = n

1. Dairesel (Dönel) Permütasyon

n tane farklı elemanın dönel (dairesel) sıralamasına, n elemanın dönel (dairesel) sıralaması denir.

Elemanlardan biri sabit tutularak n elemanın dönel (dairesel) sıralamalarının sayısı (n – 1)! ile bulunur.

2. Tekrarlı Permütasyon

n tane nesnenin n1 tanesi 1. çeşitten, n2 tanesi 2. çeşitten, … , nr tanesi de r. çeşitten olsun.

n = n1 + n2 + … + nr olmak üzere bu n tane nesnenin n li permütasyonlarının sayısı,

Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol